

Technology Offer

Brassica plants with increased photosynthetic rate and seed yield

Ref.-No.: 0804-6474-IKF

Enhancing crop yield is a key objective in plant breeding, and it underpins efforts to achieve global food security amid projected population growth. Recently, improving photosynthesis has emerged as a promising strategy for yield improvement. One way to improve photosynthesis is to engineer plants that can assimilate more carbon dioxide (CO_2). This in turn can increase biomass which can help obtain greater harvests and improved resource-use efficiency. This increase in photosynthetic capacity also has the potential added benefit of reducing atmospheric CO_2 —a major greenhouse gas—by enhancing carbon storage in plant biomass, thus contributing to the mitigation of CO_2 -driven global warming.

Technology

Scientists from the Max Planck Institute for Plant Breeding Research have found that by increasing the expression of the *SQUAMOSA PROMOTER BINDING PROTEIN-LIKE GENE* 9 (*SPL9* gene) in Brassica napus plants the photosynthetic rate can be significantly increased. The scientists stably transformed the plants with a microRNA resistant version of a *SPL9* gene and observed an increase in both photosynthesis and seed mass.

Opportunity

We are now looking for a commercial partner to further develop this technology.

Patent Information

An international PCT patent application was filed on November, 28th 2024: WO2025114408.

Publication

Li et al., Current Biology 2024. DOI: 10.1016/j.cub.2024.07.068

Contact

Dr. Ingrid Kapser-Fischer

Patent- & License Manager Nutritionist, M.Sc.

Phone: +49 89 / 29 09 19-19

Email:

kapser-fischer@max-planck-innovation.de